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In the literal sense of Kelvin’s classical definition, chirality is a dichotomous concept.
In this letter, we report on theoretical results which tend to alter profoundly this conception
of chirality in a class of spaces of chiral systems. The example space considered here is
the space of 2D square-integrable complex fields. Our results show that, in such spaces,
chirality can be considered as a continuous, extensive and local geometrical phenomenon.
The presented analysis, based on a theory of symmetry groups structure, provides a rigorous
description of “the way”, “the place where”, and “the extent to which” an element of such
spaces lacks indirect symmetries. Kelvin’s definition is shown to describe the exterior signs
of this phenomenon. A major interest of this theory is that all results can be applied
to molecular wavefunctions and orbitals. Then there is hope that such results provide a
renewed insight in basic stereochemical issues related to chirality.

Chirality and related notions such as prochirality are central concepts of stereo-
chemistry [5] and tend to pervade all fields in chemistry and biochemistry. The name
“chirality” itself was coined by Lord Kelvin. Now to this name Kelvin associated his
celebrated definition: “I call any geometrical figure, or group of points, chiral, and
say it has chirality, if its image in a plane mirror, ideally realized, cannot be brought
to coincide with itself” [12]. Kelvin’s definition universally dominates the conception
of chirality in chemistry and biochemistry. An alternative statement of that definition
is that a system is said achiral if its symmetry group G contains an indirect isometry
(rotation–reflection axis, etc.) and that, if no such element can be found, it is said chi-
ral. In the framework of this dichotomous definition, the property which is positively
defined – by the fact that G contains some special type of elements – is achirality, and
not chirality. As a corollary, the only stated property of chiral systems is that they
fail to be achiral. Therefore, if specialized to the molecular case, Kelvin’s framework
indiscriminately sets chiral molecules into a single broad negatively defined category.
As a consequence, the ways different molecules are chiral are neither distinguished
nor described. A fortiori, in that framework, chirality is clearly and definitely not
conceived as an extensive phenomenon.

In this letter, we report on recent theoretical results, of purely geometrical nature,
which tend to alter profoundly this conception of chirality in a definite class of spaces
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of potentially chiral systems. The considered spaces are the spaces of square-integrable
complex fields. These results show that, in such spaces, there exists a definite geo-
metrical phenomenon, to be precisely defined below, which determines the presence
or the absence of indirect isometries in symmetry groups. Moreover, this phenomenon
provides, in a unique way, a definition and a description of the way, the place where,
and the extent to which an element of such spaces lacks indirect symmetries. This
phenomenon, which is continuous, local, extensive and positively defined, therefore
appears as the “hidden” geometrical mechanism at work behind the presence or the
absence of indirect symmetries. From this point of view, indirect symmetries reduce
to the dichotomous exterior signs of existence of this phenomenon. In other words,
this phenomenon is similar to the continuous and extensive conception of the opening
of a door, while the presence or the absence of indirect symmetries are similar to the
door being dichotomously said “closed” or “open” (respectively, presence or absence
of indirect symmetries). In that sense, our presently unnamed phenomenon appears as
a deeper geometrical point of view than Kelvin’s dichotomous point of view in the
considered spaces (figure 1). On the other hand, Kelvin’s definition is a symmetry
statement. As will be shown below, the definition of the “unnamed phenomenon”
relies exclusively on a group theoretical analysis. Therefore, both definitions equally
are symmetry statements, the latter being much more elaborate than the former. These
arguments suggest that the most adapted and relevant denomination of this phenom-
enon is the denomination of chirality itself. Therefore, in the considered spaces we
propose to transfer to this phenomenon the denomination which is presently applied
to Kelvin’s definition. Other general arguments in support of this proposition are dis-

Figure 1. A representation of the relation between Kelvin’s definition and the continuous conception of
chirality in H . First plain arrow: to the name “chirality” is associated Kelvin’s dichotomous definition.
Second plain arrow: Kelvin’s definition is here shown to be the discrete expression of a continuous, local
and extensive geometrical phenomenon. This result is only based on confronting this definition to the
structure of H . Conversely, considering now a whole class of spaces like the Hilbert spaces L2(Rn, dm),
this result shows that at a fixed level of space structure the two conceptions of chirality are logically

equivalent (dashed arrows).
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cussed in [16]. Then an expression of the central result of the presented theory is that
chirality can be considered as a continuous, extensive, local and positively defined
geometrical phenomenon in a definite class of spaces.

In order to avoid misinterpretations of the following theory, two important points
will be discussed now. Firstly, the considered spaces are the Hilbert spaces of square-
integrable spatial distributions of complex numbers (fields) [16]. The scope of this
article will be limited to the first non-trivial example, that of two-dimensional (2D)
fields ∫∫

R2

∣∣ψ(x, y)
∣∣2 dx dy < +∞. (1)

This space would be denoted L2(R2, dm) in analysis, where dm = dx dy is the
Lebesgue measure on the plane, and will be denoted H here. This space is the
basic space of states of 2D non-relativistic quantum mechanics [16]. Then the major
interest of the presented theory is that all results can be applied to quantum mechanics.
However, it must be emphasized from the outset that our results are completely inde-
pendent from the interpretation of H as a quantum space: the nature of the proposed
theory is purely geometrical, so that it is firstly a mathematical theory. Neverthe-
less, it can be considered from the specialized point of view of quantum mechanics,
and, if considered from this point of view, the following results practically provide
physics and chemistry with a theory of the chirality of wavefunctions, that applies to
all types of one-electron orbitals (HOMO, LUMO, etc.) or nuclear wavefunctions and
also to molecular electronic densities,1 in particular in the framework of the adiabatic
approximation [2].2 Secondly, note that the following theory should not be confused
with the interesting and long-standing attempts at measuring or quantifying chirality
by appropriate “degrees” or “indices” [1,3,4,7,9,11,13,14,17,19,20,22,23]. First of all,
to the best of our knowledge, Kelvin’s definition has never been questioned in itself in
such attempts, while this question is central to this work: we report here on a theory
of the concept of chirality in itself, not on a theory of chirality degrees or indices,
however fruitful and important such approaches prove to be. Moreover, the proposed
degrees of chirality have been applied to very special objects – geometrical figures or
finite sets of points in two and three dimensions [1,3,4,7,9,11,13,14,17,19,20,22,23] 3

– while the results henceforth reported tend to emphasize the fundamental role of the
space structure in the theory, as fully developed in [16]. To further insist on the basic

1 Continuous integrable fields vanishing at infinity are square-integrable. Hence, molecular electronic
densities, being continuous square moduli of wavefunctions, also belong to H .

2 In particular, this theory can equally be applied to stationary and non-stationary quantum states [12].
If the Hamiltonian is invariant by parity, then stationary states can be chosen achiral, both in the sense
of Kelvin’s framework and of the present conception. Then questions on the states (density operators)
relevant to the description of statistical ensembles of chiral molecules appear largely distinct from
questions on the notion of chirality itself. Former questions are firstly the province of ergodic theory
and statistical mechanics.

3 An interesting distinction between physical and geometrical chiralities was recently introduced [6,8].
A thorough discussion of chirality in the physical context is found in [10].
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theoretical and practical distinction between the concept of chirality and the notion of
chirality degrees, note that no mention is made of “measuring” chirality in the scope
of this article.

Salient features of the 2D theory will now be discussed. Complete proofs will
appear elsewhere [16]. The theory starts with a simple remark, which can be grossly
schematized in the following way: molecular theory is basically concerned with quan-
tum wavefunctions. Then the discussion of molecular chirality should first be con-
cerned with wavefunctions (see footnote 3 on the previous page). Now wavefunctions
are very specific objects, in that quantum theory requires that they form vector spaces
of well-defined structure called Hilbert spaces. The question is: what happens if we
confront the structure of those spaces with Kelvin’s definition? Is it possible that, by
embedding Kelvin’s general definition in a space of definite overall structure, chirality
gets qualitatively new features originating in that structure? The advantage of con-
sidering the example of H is that H is the prototype of a category of spaces which
are basic both to quantum mechanics and to analysis. Let us then analyse Kelvin’s
definition in H . This definition can be expressed through symmetry groups, which are
subgroups of the group of isometries [16]. Therefore the emphasis is placed on the
properties of symmetry groups and isometries in H . Now the key argument relies on
an original theory of the structure of these groups [16].4 This idea is best explained
in a simplified context. Suppose that H could be decomposed as the direct sum of
two linear subspaces H1,H2 globally invariant by isometries.5 Let ψ1 (ψ2) be the pro-
jection of ψ ∈ H on H1 (H2) and G (G1,G2) be the symmetry group of ψ (ψ1,ψ2).
Then it is shown [16] that G = G1 ∩ G2. In plain words, G has a definite structure
as the intersection of two more “elementary” symmetry groups G1,G2. If G1,G2 are
achiral, all questions concerning achirality of G are therefore changed into questions of
alignment of the indirect symmetry elements of G1,G2, since the indirect symmetry
elements of G must be present in both groups. In the general case, the strategy is
to iterate such decompositions down to achiral building blocks. A detailed structure
of G is uncovered in this way. There appears a single preferred decomposition [16]
whose 2D expression is{

G(r) =
⋂
n>1G

(r)
n ,

Gn =
⋂
r>0G

(r)
n ,

G =
⋂
n>1

Gn =
⋂
r>0

G(r) =
⋂
n>1

⋂
r>0

G(r)
n . (2)

Let us briefly discuss the sense of this decomposition. This decomposition presupposes
that a given origin O is selected. It is shown that this origin can be arbitrarily chosen
in the plane (cf. the inversion center in figure 4 and the center of the double bond in
figure 5). This result relies on an appropriate local generalization of Kelvin’s defini-
tion, called local chirality, which is argued to be of direct chemical significance in [16].

4 This argument is basically concerned with real fields. Complex fields are treated as two independent
real fields [16].

5 This is equivalent to stating that the elements of H1,H2 have well-defined transformation laws under
isometries.
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The radial group G(r) is the symmetry group of the restriction ψ(r) of ψ to the circle
of radius r and center O. The canonical group Gn is the symmetry group of the nth
“canonical projection” ψn of ψ, i.e., the part of ψ having Cn rotational symmetry [16].
The radial canonical groups G(r)

n are the radial groups of canonical projections. Fol-
lowing (2), the G(r)

n are the universal building blocks of symmetry groups. All G(r)
n

are shown to belong to the class Dn of 2D achiral groups [16]. Now, there are infi-
nitely many groups Dn[α] in that class, which differ by the orientation α of the set
of n indirect axes (n-star). It happens [16] that the orientation of the n-star of G(r)

n is
related to the phase ϕn(r) of the so-called absolute radial function (ARF) ∆n(r),

∆n(r) =
1√
2π

∫ 2π

0
ψ(r, θ) e−inθ dθ, (3)

by the basic formula

G(r)
n = Dn

[
−ϕn(r)/n

]
. (4)

The relative orientation of G(r)
n ,G(r)

m depends similarly on the phase of the so-called
relative radial function (RRF) ∆n,m(r),

∆n,m(r) =
[

∆n(r)
]M[∆m(r)

]N
(5)

(M = m/p, N = n/p, p = highest common factor of n,m) [16]. Radial functions are
to play a crucial role in the following, so their basic representation is introduced now.
In the complex plane (real part versus imaginary part), the complex functions ∆n(r)
and ∆n,m(r) are represented by paths oriented in the direction of increasing r. These
paths are shown to begin and to end at the origin [16]. Then they will respectively be
called absolute and relative chiral loops (ACL, RCL) (figure 2).

What do we get by this analysis of symmetry groups? The fundamental result
is that, following the decomposition (2), all questions on chirality (contents of G) are
turned into questions on misalignment of the G(r)

n (n-stars). Two special forms of
misalignment of the G(r)

n can be distinguished: (i) over r at fixed n, (ii) over n at
fixed r. Following (2), case (i) deals with the chirality of the projections ψn, to be
called absolute chirality, while case (ii) deals with the chirality of the restrictions ψ(r),
to be called relative chirality. We shall concentrate now on absolute chirality. At
fixed n, it is readily shown from (4) that two radial canonical groups G(r1)

n ,G(r2)
n

are aligned – that is, have common indirect elements – if and only if (iff ) ∆n(r1),
∆n(r2) are aligned with the origin in the complex plane (figure 2). By straightforward
generalization, a first result is that ψn is achiral iff the ACL is included in a straight
line containing the origin.

However, the interpretation of ACLs is not confined to this extreme case. In the
general case, relation (4) shows that the phase difference modulo π between ∆n(r1)
and ∆n(r2) is a continuous measure of the relative orientation of G(r1)

n ,G(r2)
n . Hence the

ACL is an exact representation of the distribution of orientations among all groups G(r)
n

in which Gn is decomposed. This is the basic property of ACLs. Let us now consider
specific examples (figure 3). The ACL (a) is close to a line segment, hence the



434 P. Le Guennec / On the concept of chirality

Figure 2. Relation between field, radial canonical groups and ACLs. (a) shows the restrictions ψ(r1),ψ(r2)

of a field ψ to two circles of radii r1, r2. The cross denotes an arbitrary origin. Arrows show the
integration contours defining ARFs. (b) shows a polar plot in the case n = 2 of the component ψ(r1)

n

of ψ(r1) having Cn rotational symmetry, which can be written [16] ψ(r1)
n (θ) = |∆n(r1)| cos(nθ+ ϕn(r1))

(plain line). The sign reported beside every lobe is the sign of ψ(r1)
n . Arrowed lines show the n-star

of G(r1)
n . The angle of the n-star to the Ox axis is −ϕn(r1)/n. The dotted line is the polar plot of ψ(r2)

n in
the case of maximal misalignment (angular gap) of the n-stars. (c) is the translation of this situation in the
language of ACLs. The phase difference modulo π between ∆n(r1) and ∆n(r2) measures the misalignment
of n-stars. Whatever n, maximal misalignment corresponds to ϕn(r2)−ϕn(r1) = ±π/2. The importance

of the ACL is that it faithfully echoes all information on radial canonical groups misalignment.

decomposition of Gn results in almost aligned G(r)
n . Accordingly, any of their n-

stars is an approximate symmetry of ψn, and a small phase change δϕn(r) makes ψn
achiral. This is the situation of weak misalignment. On the contrary, the ACL (b),
wildly wandering in the plane, requires large phase changes in order to make ψn achiral
so that no n-star can qualify as an approximate symmetry of ψn. This is the situation
of large misalignment. While both ACLs correspond to chiral projections, since both
ACLs differ from a line segment, these results suggest that (a) can properly be said
“weakly chiral” and (b) “highly chiral”. These examples illustrate the basic result that
the phenomenon of radial misalignment of the G(r)

n , which is exhaustively echoed in
the shape and the extent of ACLs, does provide a natural definition of “the way” and
“the extent to which” a projection is chiral [16]. In other words, in H , and in the
case of projections, this phenomenon indeed appears as the geometrical mechanism at
work behind Kelvin’s conception of chirality. As previously stated, this phenomenon,
to be called absolute chirality in keeping with the previous proposal, is continuous,
extensive and positively defined. Achirality is now negatively defined as the nullity
of misalignment. This phenomenon is also local in the sense that radial misalignment,
just as the vibration of a string, can be unevenly distributed or localized in definite
regions. As a final property, we get that this phenomenon is conveniently visualized
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Figure 3. Example shapes of absolute ((a),(b)) and relative ((c),(d)) chiral loops. Orientations are
emphasized by arrows. In case (a), the dashed line indicates the average direction of alignment. Radial
canonical groups are approximately aligned, hence the projection whose ACL is (a) is to be considered
as weakly chiral. In case (b), an arbitrary line was drawn (dashed line). The corresponding radial
canonical group is a very poor symmetry of the projection except in the neighbourhood of the radii of its
intersections with the ACL. The projection whose ACL is (b) is to be considered as highly chiral because
of this large misalignment of radial canonical groups. In case (c), RRF values are close to the real axis,
showing that the angular gap between radial canonical groups remains almost constantly small. Then the
couple of projections whose RCL is (c) is to be considered as weakly relatively chiral. On the contrary,
in case (d), the angular gap between radial canonical groups is almost constantly close to its maximum,

so the couple of projections whose RCL is (d) is to be considered as highly relatively chiral [16].

through ACLs. An illustrative example of the shape of ACLs in the context of a 2D
model of Walden inversion is shown in figure 4. Practical interpretation of the shape
of ACLs follows from their basic properties and will be discussed in a forthcoming
paper.

The analysis of relative chirality completely parallels that of absolute chiral-
ity [16], hence will not be detailed here. Relative chirality is a matter of misalignment
between sets of projections (“over n”). An important result is that this question can
always be reduced to the case of two projections, in the sense that a set of projections
is relatively achiral iff all couples formed from this set are relatively achiral [16]. The
relative orientation of the radial canonical groups of a pair of projections is controlled
by the phase of the RRF associated to this pair, so RRFs are to relative chirality
what ARFs are to absolute chirality. However, the two forms of chirality differ by
the criterium of achirality: a pair of projections is relatively achiral at a given r iff
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Figure 4. Evolution of absolute chirality in the SN2 mechanism. We assumed definite geometrical changes
in a 2D model simulating Walden inversion at a trivalent center with substituents H, D, Cl. Here the aim
is to show the relation between given geometrical changes in a system and the subsequent evolution of
chirality. The evolution of chirality during a chemical reaction is a special case of this relation. Atoms are
modelized by Gaussian electronic densities of different widths (atomic radii) and weights. Analytically
known ARFs of order n = 1 of the system as a whole are reported at various reduced times t (unit Å−2).
From left to right: (i) t = −1 (crossed line), the ACL with a distant nucleophile, (ii) t = −1/4 (dotted
line), the system becomes weakly chiral as both Cl are close to the center, (iii) t = 0 (vertical line), the
ACL of the assumed achiral transition state is a straight line, (iv) t = 1/4 (dashed line) and (v) t = 1
(plain line), enantiomer systems generate symmetrical ACLs [16]. Such diagrams are typical of Walden

inversion.

the RCL crosses the real axis at r. Then, by a straightforward generalization, two
projections are relatively achiral (i.e., over all r) iff the RCL is included in the real
axis (figures 3 and 5). As in the case of absolute chirality, the phenomenon at work
behind the previous dichotomous definition (presence or absence of indirect symme-
tries in G(r)) is the continuous, local, extensive and positively defined phenomenon of
relative misalignment (i.e., over n at fixed r) of the G(r)

n . According to our proposition,
this phenomenon is to be called relative chirality. An illustrative example of the shape
of RCLs in the context of 2D cis-trans-isomerism is shown in figure 5.

Gathering these results, we get a synthetic conception of chirality in H . There
appears two and only two special theoretical forms of chirality – absolute and relative
chirality. In that respect, a basic result is that a field is achiral iff it is both absolutely
and relatively achiral [16]. Then previous results on the special cases of absolute
and relative chirality show that the presence/absence of indirect symmetries in G
is determined by the phenomenon of misalignment of the radial canonical groups
G(r)
n (n-stars in 2D) over the full domain of indices n, r [16]. This phenomenon

is exhaustively represented by the set of relevant ACLs and RCLs. It is, indeed,
continuous, local, extensive and positively defined, as announced in introduction. In
keeping with our proposal, this phenomenon is to be called “chirality”. Absolute and
relative chirality appear as differing only by the two “independent directions” over
which misalignment is considered.
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Figure 5. 2D cis-trans-isomerism. Atoms are modelized by Gaussian electronic densities whose parame-
ters simulate 1,2-dichloroethylene [16]. In 2D, there are two trans- and one cis-isomers. Trans-isomers
have C2 symmetry at the double-bond center, which is the considered origin, so their odd order ARFs are
zero. Non-zero RCLs of lowest order n,m = 2, 4 are reported for the two trans-isomers (∆2,4 = [∆2]2∆4).
The cis-RCL of the same order is also reported. Data are expressed in 10−5 Å−6. The trans-isomers
are 2D enantiomers, so have symmetrical RCLs of opposite orientations [16]. The cis-isomer is achiral,
so the cis-RCL lies on the real axis. Cis- and trans-isomers are diastereoisomers, hence have RCLs of
different shapes. In the cis case, 2D prochirality could be evaluated by slightly varying the description
of one model substituent. Enantiotopes are then shown to generate symmetrical loops. Note that the 2D

trans-isomers correctly appear as a single achiral molecule in the 3D theory.

Let us briefly – and in an extremely preliminary way – comment on this concep-
tion of chirality in the light of experimental evidence. From the experimental point
of view, all signatures of chirality, such as NMR chemical shift differences between
enantiomers in chiral solvents, or circular dichroism, point at continuously varying
quantitative differences between the pseudo-tensorial observables associated to dif-
ferent chiral molecules. Other types of signatures, such as enantiomeric excess or
reaction rate measurements, point at the same conclusion. Such continuous variations
are directly related to the various observables at stake in every peculiar experiment,
so have nothing to do a priori with chirality being conceived either as a dichotomous
or a continuous phenomenon. However, there are many molecules, such as 1-stearoyl-
2,3-dipalmitoylglycerin or 7-methyl-[1-14C]-tridecane [3] for which all experimental
signatures tend to be simultaneously weak. There exists a wide-spread intuitive ten-
dency to consider such molecules as “weakly” chiral [1,3,4,6–11,13–15,17–23]. What
is usually more or less explicitely understood by such a statement is, firstly, that
the origin of such coherent experimental evidence is ascribed to the “geometry” of
the molecule, and secondly, that it is assumed that, in some indetermined sense, this
geometry is such that the molecule is “close” to being achiral. Such intuitive stereo-
chemical interpretations are in direct conflict with Kelvin’s conception of chirality.
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Now this paradoxical issue is naturally resolved in the continuous conception, which
precisely provides room for weakly chiral electronic/nuclear distributions, in the above
well-defined and geometrically profound sense. Similarly, we feel that many chemists
would agree that L-Alanin is “more” chiral that L-[2-d]-Glycin, in the light of co-
herent reactivity evidence. Such comparisons are put on a firm and profound basis
by this theory. Therefore, there is hope that these results provide renewed insight in
the basic issues of chirality in chemistry and biochemistry. As exemplified by fig-
ures 4 and 5, practical applications of chiral loops can be expected both in structural
studies, as a means to visualize and analyse the distribution of chirality in all types
of (bio)molecules, and in dynamical studies, in particular in relation with asymmetric
synthesis. Work on the 3D theory is in progress. However, the 2D approach is imme-
diately relevant to the active field of chiral phenomena connected to interfaces (chiral
monolayers, membranes, other types of interfaces) or to systems properly represented
by 2D models (planar molecules, some host–guest systems, etc.). The chirality of such
systems can already be studied in the proposed framework, as we showed in the case
of cis-trans-isomerism and Walden inversion.

In conclusion, we showed that an extension of Kelvin’s conception of chirality
as a continuous, extensive, local and positively defined geometrical phenomenon nat-
urally follows from analysing the structure of symmetry groups in the space H . This
concept, to which the denomination of chirality is naturally extended, tends to support
intuitive experimental interpretations of chirality as a continuous phenomenon, and
leads practically to a detailed representation of chirality by the two basic forms of
chiral loops – absolute and relative chiral loops. This approach was examplified on
two model systems, Walden inversion and cis-trans-stereoisomerism.
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